Statistical mechanics of low-rank tensor decomposition
نویسندگان
چکیده
منابع مشابه
Sparse and Low-Rank Tensor Decomposition
Motivated by the problem of robust factorization of a low-rank tensor, we study the question of sparse and low-rank tensor decomposition. We present an efficient computational algorithm that modifies Leurgans’ algoirthm for tensor factorization. Our method relies on a reduction of the problem to sparse and low-rank matrix decomposition via the notion of tensor contraction. We use well-understoo...
متن کاملLow-rank Tensor Approximation
Approximating a tensor by another of lower rank is in general an ill posed problem. Yet, this kind of approximation is mandatory in the presence of measurement errors or noise. We show how tools recently developed in compressed sensing can be used to solve this problem. More precisely, a minimal angle between the columns of loading matrices allows to restore both existence and uniqueness of the...
متن کاملTensor rank-one decomposition of probability tables
We propose a new additive decomposition of probability tables tensor rank-one decomposition. The basic idea is to decompose a probability table into a series of tables, such that the table that is the sum of the series is equal to the original table. Each table in the series has the same domain as the original table but can be expressed as a product of one-dimensional tables. Entries in tables ...
متن کاملEfficient tensor completion: Low-rank tensor train
This paper proposes a novel formulation of the tensor completion problem to impute missing entries of data represented by tensors. The formulation is introduced in terms of tensor train (TT) rank which can effectively capture global information of tensors thanks to its construction by a wellbalanced matricization scheme. Two algorithms are proposed to solve the corresponding tensor completion p...
متن کاملProvable Low-Rank Tensor Recovery
In this paper, we rigorously study tractable models for provably recovering low-rank tensors. Unlike their matrix-based predecessors, current convex approaches for recovering low-rank tensors based on incomplete (tensor completion) and/or grossly corrupted (tensor robust principal analysis) observations still suffer from the lack of theoretical guarantees, although they have been used in variou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Statistical Mechanics: Theory and Experiment
سال: 2019
ISSN: 1742-5468
DOI: 10.1088/1742-5468/ab3216